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Abstract

The authors have developed a model of coupled heat and mass transport within a porous medium (sheet) saturated

with an aqueous solution of initial non-zero solute concentration. The novel contribution of the present work is the

resolution of the equations for simultaneous heat and mass ¯ows at one of the interfaces for a wide range of tem-

peratures and concentrations. Good agreement was noted between the simulated and the experimental data. The results

presented also underline the fact that this knowledge model helps to clarify our understanding of the interaction

mechanisms between heat and mass transport during the immersion freezing process. Ó 2001 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

The study of heat and mass transfer with phase

change (freezing) within a porous medium saturated

with an aqueous solution is of interest to various ®elds

of application. For instance:

· in soil science, subsea permafrost thaws relatively

slowly but to a gradually increasing depth; thawing

is associated with the existence of di�erences both

in temperature and in sodium chloride concentration

between the seawater and the permafrost [1];

· in cryobiology, one of the factors determining the

survival rate of frozen embryos is the control of heat

and mass transfer between the tissues and the freez-

ing medium containing cryoprotective agents [2];

· in food technology, immersion freezing of food-

stu�s in direct contact with concentrated aqueous

solutions (e.g. brine) is a rapid individual quick

freezing (IQF) process. The process has not been

developed to any great extent because of di�culty

in controlling solute impregnation; however a reviv-

al of interest is apparent with the appearance of

new food products, i.e. preformulated frozen prod-

ucts [3].

Although heat transfer is more rapid than mass

transfer and thermal equilibrium is established well be-

fore mass equilibrium, the two types of transport are

nevertheless closely linked when they develop within a

porous medium. Coupling occurs through a variety of

di�erent mechanisms:

(i) In the media studied (saline soil, cell tissues), in-

itial concentration, x`
10

, is non-zero. This means

that while the medium is in the course of freezing,

the solute concentration of the remaining liquid

phase (x`
1) increases (cryo-concentration) and its

freezing temperature (Tsatfx`
1g) decreases. The me-

dium contains a liquid region (as yet unfrozen, with

x`
1 � x`

10
), a `mushy' region (x`

1 variable with the

position and time) and a completely frozen region.
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(ii) Cryoconcentration induces a concentration

gradient between the mushy region and the com-

pletely liquid region; this is re¯ected in solute redis-

tribution and enrichment of the liquid region at the

expense of the mushy region.

(iii) The convection or bulk ¯ow engendered by ice

expansion induces mass transport. This phenom-

enon represents about 9% of the rate of advance

of the freezing front [4].

(iv) The di�erence in density between the solution

in the mush (high concentration, low temperature)

and that in the completely liquid region (low con-

centration, high temperature) induces convective

transport, of signi®cant proportions if the freezing

front travels in a downwards (i.e. in the direction

of the earth's gravity).

(v) A thermal gradient within the porous medium

can engender mass transport (Soret e�ect), or vice

versa (Dufour e�ect).

(vi) The thermodynamic properties (e.g. enthalpy

of the medium) and transport properties are a

function of both the temperature and the com-

position of the medium. They are also very sen-

sitive to the ice fraction. In particular, the area

available for di�usion is reduced by the pres-

ence of ice, with a linear decrease in the e�ec-

tive coe�cient of di�usion as the ice fraction

increases.

(vii) At the porous medium/external solution inter-

face, interaction between heat and mass transfer af-

fects the nature of heat and mass transport within

the porous medium.

Nomenclature

A variable used in the numerical resolution of

Eqs. (35)±(37)

B variable used in the numerical resolution of

Eqs. (35)±(37) (°Cÿ1)

C speci®c heat (J kgÿ1 Kÿ1)

x`
10

e�ective di�usion coe�cient of NaCl within

the porous medium (m2 sÿ1)

D`
1=2 mutual di�usion coe�cient of water and NaCl

in the liquid phase (m2 sÿ1)

D`
1=2�

mutual di�usion coe�cient of water and NaCl

at in®nite dilution (m2 sÿ1)

e freezing front position from interface porous

medium/external solution (m)

H partial mass enthalpy (J kg ÿ1)

h heat transfer coe�cient (W mÿ2 Kÿ1)

DH latent heat of fusion of ice (J kgÿ1)

K mass transfer coe�cient (m sÿ1)

k thermal conductivity (W mÿ1 Kÿ1)

L height of the porous medium (m)

m2
�

water crystallisation mass rate (kg mÿ3 sÿ1)

T temperature (°C)

Tsat liquidus curve function (°C)

t time (s)

Dt time step in ®nite di�erence calculations (s)

X thawing front position from interface porous

medium/external solution (m)

x Cartesian coordonate in an upwards direction

(perpendicular to ¯ow) (m). x� 0 at the in-

terface porous medium/external solution

Dx space step in ®nite di�erence calculations

(m)

y Cartesian coordonate in a lengthwise direction

(parallel to ¯ow) (m). y� 0 at the inlet

z Cartesian coordonate in the porous medium

in a widthwise direction (tangential to ¯ow)

(m) z� 0 at the porous medium/refrigerating

solution interface

Greek symbols

b constant used in Eq. (20) (°C)

e porosity of the solid matrix
~gi ¯ow of component i through the porous me-

dium (kg mÿ2 sÿ1)

l dynamic viscosity (Pa s)

q density (kg mÿ3)

s tortuosity of the solid matrix

x mass fraction

xsat inverse function of Tsat

Subscripts

E Eutectic

` liquid phase

j node in the numerical scheme (1 < j < j max)

m porous medium

n time in the numerical scheme

s solid phase

0 initial moment in the porous medium

1 solute, in the context of application solute is

NaCl

2 liquid water

3 ice

4 glass beads

1 external solution

Superscripts

0 identi®es the reference for enthalpy calcula-

tion

m identi®es a quantity associated with the po-

rous medium

` identi®es a quantity associated with the liquid

phase

+ identi®es a quantity associated with the liq-

uid + ice phases
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Existing coupled heat and mass transfer models in-

corporate one or more of these phenomena, but rarely

all. In this introduction phenomena (iv) and (v) will not

be further studied and discussed.

Mass transport has been coupled with heat transport

during the freezing of a concentrated aqueous solution

(x`
10
6� 0) as a free medium, e.g. [5±7]. In such models, the

system studied never includes mass transfer at the inter-

face. Only cryo-concentration (i) and redistribution (ii)

are considered [5]; mass transport following ice

expansion may also be taken into account [6,7]. The

thermophysical and transport properties are also tem-

perature- and concentration-dependent phenomenon (vi)

[5±7]. It is di�cult to validate the models experimentally,

as sampling of the solution is virtually impossible during

freezing beyond a certain ice fraction and the concen-

tration di�erences in any pro®le are low. Only Jochem

and Korber [5] present an experimental validation of

solute redistribution after the freezing of a water±NaCl

solution. The phenomena are well reproduced, although

solute redistribution appears to be underestimated.

Experimental measurement of mass transport is at pre-

sent not precise enough to determine the respective

contributions of the various possible mechanisms, e.g.

the increase in crystal size or bulk ¯ow [5±7].

Other models, applied to the thawing of permafrosts,

couple mass and heat transport within a semi-in®nite

porous medium, saturated with frozen pure water

(x`
10
� 0; T0) and in contact with a concentrated aqueous

solution (x`
11 Px`

10
; T1P T0). The system studied and

the phenomena examined are presented diagrammati-

cally in Fig. 1(b). One feature considered is discontinuity

of the ice mass fraction, x�3 (or thawing front) between

the completely thawed region (x�3 � 0) and the com-

pletely frozen region (x�3 � 1). Formulated in this way,

the problem is simply a generalisation of the Neuman

problem [8]. It has been developed by Harrison and

Osterkamp [9] and others. Heat and mass transports are

coupled at the freezing front by the liquidus equation.

To simplify resolution, the liquidus curve is assumed to

be linear and the temperature and concentration ranges

considered within the system are therefore very small

(DT 6 4°C; Dx`
16 0:05). Experimental validation of the

model against permafrost is hampered by inadequate

knowledge of the transport properties in such complex

media.

Vasil'ev et al. [10] have developed the generalised

Neuman problem, replacing the completely frozen

region (x`
10
� 0) by a partially frozen (mushy) region

(Fig. 1(c)). Solute di�usion also occurs in the liquid

Fig. 1. Approaches to coupled transfer modelling in the literature: (a) Jochem and Korber [5]; (b) Harrison and Osterkamp [9];

(c) Vasil'ev [10].
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phase of the mush, and the liquidus equation linking T

and x`
1 is valid for all the mush. For the purposes of

analytical resolution, the authors linearise the mass

equation, complementing the hypotheses already ad-

vanced by Harrison and Osterkamp [9]. In the presented

simulations, both cases T1 > T0 and T1 < T0 were con-

sidered, with x`
11 Px`

10
.

In this paper these authors consider a porous me-

dium saturated with a dilute water±solute solution. Ini-

tially the system is at uniform temperature (T0) and

solute concentration (x`
10

). At time t � 0, the porous

medium is put in contact with a concentrated binary

water±solute solution (xE > x`
11 > x`

10
; TE < T16 T0).

This initiates the chilling and freezing process and solute

di�usion from the surface inwards. The aim of the

present work was to develop a model of coupled heat

and mass transport that could be used to predict both

the freezing and the thawing phenomena of a porous

medium of ®nite dimensions (slab). In comparison to the

existing models, the main advances are consideration of

convective heat and mass ¯ows at the porous medium/

concentrated solution interface and resolution of the

model for a wide range of temperatures and concentra-

tions. The ®rst part presents the equations of the model

and the simplifying assumptions. The second part

compares simulations using the model with both the

existing analytical solutions and our own experimental

data.

2. Heat and mass transfer model

Structure of the studied system and main assump-

tions were the following:

(A1) A porous medium comprising a solid matrix

and a saturating dilute water±solute solution was

under consideration. The solid matrix of porosity

e was assumed to be inert (e.g. no chemical reac-

tions with the saturating phase(s)) and not to un-

dergo any deformation. The whole system was

considered as a continuum.

(A2) All phases were at the same temperature and

local phase equilibrium in the mushy region was

valid (referring to equilibrium phase diagram). Su-

percooling phenomena were not taken into ac-

count.

(A3) The solute concentration in both the external

solution and the solution saturating the porous

medium, is considered lower than the eutectic

concentration given by the state diagram of the

water±solute system. Their temperature is also con-

sidered higher than the corresponding eutectic tem-

perature. This implies that (i) only water may

crystallise (no possible crystallisation of solute);

(ii) that whatever the temperature in the porous

medium, it always persists some liquid phase.

(A4) The densities of the water±solute solution (q`),
the ice (q3) and the beads (q4) were constant. The

volume change associated with ice±water phase

transition (about 9%) was neglected (q` � q3 �
1000 kg mÿ3).

(A5) Mass transport took place only in the liquid

phase (no transport of either the solid matrix or

the ice crystals).

(A6) The problem is solved numerically for the case

of a slab (one-dimensional treatment). The surface

at x� 0 is put in contact with the external solution;

at the other one (x�L), all ¯ows equal to zero.

In such conditions, the macroscopic equations gov-

erning heat and mass transport phenomena were:

2.1. Mass conservation

The mass conservation equations presented in Table

1 are written for each component in each phase [11]. qm
i

is the density of component i in the porous medium (kg i

per m3 of porous medium); gm
i , the ¯ow of component i

(kg i per m2 of porous medium and per unit of time); m2

�
,

the water crystallisation mass rate per m3 of porous

medium and per unit of time.

Adding Eqs. (1)±(4) results in Eq. (5):

o
ot
�qm� � r � �~gm

1 �~gm
2 � � 0; �5�

where qm is the e�ective density of the porous medium

(qm � qm
1 � qm

2 � qm
3 � qm

4 ).

By de®nition

~gm
` �~gm

1 �~gm
2 : �6�

Eq. (5) can now be written as:

o
ot
�qm� � r � �~gm

` � � 0: �7�

On the basis of assumptions (A4) and (A6), qm is con-

stant and ~gm
` � 0 at x�L, so according to Eq. (7) the

Table 1

Summary of mass conservation equations

Phase Component (i) Mass conservation equation

Liquid (`) Solute (1) oqm
1

ot
�r � ~gm

1

� �
� 0 �1�

Water (2) oqm
2

ot
�r � ~gm

2

� �
� ÿm2

� �2�

Solid (s) Ice (3) oqm
3

ot
� m2

� �3�

Glass beads (4) oqm
4

ot
� 0 �4�
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mean velocity of the liquid phase is zero at all points in

the medium.

2.2. Mass transport equation

Mass (liquid water and solute) transport in the liquid

phase is thus purely di�usional and does not include

convective transport. The mass transport equation is

developed for the solute according to FickÕs law of dif-

fusion [11]

~gm
1 � ÿqm

` Dm
1=2r�x`

1�; �8�

where Dm
1=2 is the e�ective di�usion coe�cient of the

solute within the porous medium. Eq. (1) can now be

rewritten taking into account Eq. (8)

oqm
1

ot
ÿr � qm

` Dm
1=2r�x`

1�
� �

� 0: �9�

2.3. Energy conservation equation

The equation for changes in temperature, T, is de-

rived from the energy balance per unit of volume. Only

heat conduction is under consideration and the well-

known FourierÕs law is applied (i.e. we assume no work

done by gravitational, viscous or pressure forces, nor

heat of dilution)

o
ot

qm
1 H1

ÿ � qm
2 H2 � qm

3 H3 � qm
4 H4

�
� r � kmrT� � ÿ r � H1g

m
1

ÿ � H2g
m
2

�
: �10�

Here km is the e�ective thermal conductivity of the po-

rous medium, and Hi2�1;2;3;4� is the partial mass enthalpy

of component i. The latter is expressed as Hi �
H 0

i � Ci�T ÿ T 0�, where H 0
i is the partial mass enthalpy

at the reference temperature T 0 taken at 0°C. The spe-

ci®c heat values are considered to be independent of

temperature and solute concentration (A7).

By replacing the full expressions of the partial mass

enthalpies into Eq. (10) and using the mass conservation

Eqs. (1)±(4), it gives after simpli®cation

o
ot

qC� �mT� � ÿ H 0
2

ÿ ÿ H 0
3

�
m
�

2

� r: kmrT� � ÿ r � C1Tgm
1

ÿ � C2T gm
2

�
: �11�

Here

qC� �m � qm
1 C1 � qm

2 C2 � qm
3 C3T � qm

4 C4: �12�
The enthalpy of fusion of ice is de®ned as DH � H 0

2 ÿ H 0
3

at the reference temperature T 0 � 0°C. By replacing

Eqs. (3) and (12) into Eq. (11), it gives

o
ot

qm
1 C1T

ÿ � qm
2 C2T � qm

3 �C3T ÿ DH� � qm
4 C4T

�
� r � kmrT� � ÿ r � C1T gm

1

ÿ � C2Tgm
2

�
: �13�

Here

qm
1 C1 � qm

2 C2 � qm
l �x`

1C1 � x`
2C2� � qm

` C`;

which leads to reformulate Eq. (13) as follows

o
ot

qm
` C`T

ÿ � qm
3 �C3T ÿ DH� � qm

4 C4T
�

� r � kmrT� � ÿ r � T C1g
m
1

ÿÿ � C2g
m
2

��
; �14�

where

C` � x`
1C1 � x`

2C2 � C2 � x`
1 C1� ÿ C2�: �15�

We assume that C` is independent of x`
1 (A8), which is

the equivalent of writing

C2 � x`
1 C1� ÿ C2� �16�

and, by substituting Eq. (16) into Eq. (15), we obtain

C` � C2: �17�

This result will be taken into account when carrying out

the numerical application.

The convective term can be expressed as

T C1g
m
1

ÿ � C2g
m
2

� � C2 gm
1

ÿÿ � gm
2

�� C1� ÿ C2�gm
1

�
T :

�18�
As previously demonstrated, gm

1 � gm
2 � 0. We ad-

ditionally assume that the term �C1 ÿ C2�gm
1 from

Eq. (18) can be neglected when compared to r � �kmrT �
from Eq. (14) (A9). Let us point out that this new as-

sumption remains consistent with previous Assumption

(A8). Thus the convective term equals zero.

Eq. (13) can now be rewritten as

o
ot

qm
` C`T

ÿ � qm
3 �C3T ÿ DH� � qm

4 C4T
�

� r � kmrT� �: �19�

2.4. Thermodynamic relation

The thermodynamic relation between temperature

and solute concentration in the presence of ice is

described by a second-order polynomial equation

(A10)

Tsat x`
1

� 	 � b1 � b2 � x`
1 � b3 � �x`

1�2: �20�

2.5. Initial and boundary conditions

At t� 0, solute concentration and temperature are

constant inside the medium

x`
1 x; tf � 0g � x`

10
> 0; �21�

T x; tf � 0g � T0 > 0°C �no ice�: �22�
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At x � L, one can write an adiabatic and impervious

condition

r�x`
1� � 0; �23�

rT � 0: �24�
At the medium/external solution interface (x� 0), heat

and mass ¯uxes are given by the heat and mass transfer

coe�cients (noted h and K, respectively)

q`1K x`
11

ÿ ÿ x`
1 xf � 0; tg� � ÿqm

` Dm
1=2r�x`

1�; �25�

h�T1 ÿ T xf � 0; tg� � ÿkmrT : �26�

2.6. Numerical solution

The equations set (9), (19), (20) described earlier is

rewritten before being discretised into one-dimensional

elements and then integrated by numerical calculation.

Using Table 2, the new formulation results in a set of

three main Eqs. (32)±(34) that can be used to evaluate

the changes in the three independent variables selected:

temperature (T), the solute mass fraction in the liquid

phase (x`
1) and the ice mass fraction in the ice±liquid

mixture (x�3 ).

o
ot

q`e�1
ÿ ÿ x�3 �x`

1

� � o
ox

q`e�1
�

ÿ x�3 �Dm
1=2

ox`
1

ox

�
; �32�

o
ot

q4�1
� ÿ e�C4T � q`e �1

ÿ ÿ x�3 �C`T � x�3 �C3T ÿ Dh���
� o

ox
km

oT
ox

� �
; �33�

T � b1 � b2 � x`
1 � b3 � �x`

1�2 if x�3 > 0: �34�
The equations set is solved by a ®nite di�erences

method. The calculation domain is covered by a net-

work of nodes, Nj, around which control volumes are

constructed. Because of the high nonlinearity of the

system, a fully explicit scheme was implemented. Using

such scheme for the present case of application implies

Dt=�Dx�2 < 0:7 106, and is thus time-consuming. In the

case of the simulations presented in this paper, with

Dt � 0:05 s and Dx � 0:5 mm, the calculation lasts one-

tenth of the simulated time.

The value of any physical quantity U at node Nj and

time t � Dt is denoted Un�1
j . Eqs. (32)±(34) are developed

as follows:

1
�
ÿ bx�3 cn�1

j

�
bx`

1cn�1
j � An

j ; �35�

Bn
1jT

n�1
j � Bn

2jT
n�1
j bx�3 cn�1

j � Bn
3jbx�3 cn�1

j � Bn
4j; �36�

T n�1
j � b1 � b2 � bx`

1cn�1
j � b3

� bx`
1cn�1

j

� �2

if bx�3 cn�1
j > 0; �37�

where An
j and Bn

i2 1;2;3;4� �;j are known (refer to Appendix A

for details on the expression of these coe�cients).

Before the ®rst ice crystal appears or after the last ice

crystal disappears, bx�3 cn�1
j is forced to zero and only the

®rst two equations in the system (35) and (36) are taken

into account to calculate changes in temperature and in

the solute mass fraction. The equations are then coupled

only by the transport properties. During cooling, when

the couple fbx`
1cn�1

j ; T n�1
j g intersects the liquidus curve,

then the ice fraction passes from zero to a positive value.

The system to solve comprises the three equations (35)±

(37); eliminating bx�3 cn�1
j and then T n�1

j from the system

leads to a third-order polynomial equation with variable

bx`
1cn�1

j , the roots of which are known. Let us stress here

that the order of such polynomial equation to be ®nally

solved is highly dependent on the order of the liquidus

curve equation (Eq. (20)), and also on the assumptions

(A4) and (A7).

All the physical properties used in the model are

detailed in Appendix B.

3. Experiments

Fig. 2 presents the experimental apparatus used to

study the coupled mass and heat transport in a glass

bead bed saturated with a dilute water±NaCl solution

(x`
10
2 �0:01; 0:03�, T0 2 �10; 30°C�) and in contact with a

highly concentrated water±NaCl solution (x`
11 � 0:234,

T16 T0). The experimental apparatus and procedures

are brie¯y described below and the reader is referred to

the paper of Lucas et al. [12] for further details.

The bed of 200-lm glass beads was contained in a

plastic box (13 cm� 10 cm� �4; 10� cm). The porosity of

the porous medium was assessed experimentally and

found to be 0:428� 0:009. The porosity mean value

approximated to 0.43 was used for main simulations

presented; however when porosity measurement and

Table 2

Density of components i and of the liquid phase in the porous

medium

Solute (1)
qm

1 � q`e 1
ÿ ÿ x�3

�
x`

1 �27�
Water (2)

qm
2 � q`e 1

ÿ ÿ x�3
�
x`

2 �28�
Liquid (l)

qm
l � q`e 1

ÿ ÿ x�3
� �29�

Ice (3)
qm

3 � q`ex�3 �30�
Glass beads (4)

qm
4 � q4 1� ÿ e� �31�
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heat and mass transfer experiment were conducted on

the same glass bead bed, the particular value of the

porosity was used. The bottom of the box was limited by

a stainless steel sieve (mesh size� 50 lm). The other

sides of the plastic box were insulated. Mass and thermal

resistance of the sieve were considered to be negligible.

The size of the beads was adjusted to avoid capillarity

phenomena and natural convection at the interstices.

The bottom of the porous medium was placed above the

duct of water±NaCl solution. The ¯ow in the duct was

set at 700 l hÿ1 and the corresponding h value was as-

sessed experimentally using non-steady state measure-

ments [12]. Within the measurement area ± y 2 [75;110

mm], z 2 [35;65 mm], h was 500 W mÿ2 Kÿ1. Inside the

glass bead bed in this area, temperature measurements

were collected by previously standardised T-type ther-

mocouples and the water±NaCl solution was sampled

using the needles (1 mm external diameter) already in

the bed. The NaCl concentration of the sampled liquid

fraction was then determined with a chlorimeter

(CORNING 926).

4. Results and discussion

4.1. Isothermal mass transport

Fig. 3 compares the experimental pro®les of NaCl

concentration in the porous medium (e � 0:4) and the

pro®les predicted both by our model and using the

analytical solution of the Fick equation proposed by

Crank [13] in the case of a ¯at sheet 0 < x < 0:1 m

of uniform initial concentration and temperature

(x`
10
� 0:01, T0 � 20°C) in isothermal contact with a

concentrated water±NaCl solution (x`
11 � 0:234,

T1 � 20°C).

Preliminary simulations with our model using a

constant di�usion coe�cient gave pro®les that ®tted

Fig. 2. Schematic diagram of the experimental apparatus: (a) view from above; (b) cross-section following the segment A±A0 as drawn

in (a).
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perfectly the analytical solution calculated for the same

di�usion coe�cient value. The simulations with the

numerical model represented in Fig. 3 were carried out

taking into account a tortuosity of p/2 and changes in

the di�usion coe�cient, D`
1=2, as a function of concen-

tration and temperature (see Appendix B). Good

agreement was noted between the experimental results

and those simulated by the numerical model. When the

model was used for di�usion alone, it gave a good rep-

resentation of mass transport. This also con®rms that no

convection has been developed within the porous me-

dium. With respect to mass transport, convection can

result from the fact that the ¯ow of water does not equal

the ¯ow of solute. Such case is encountered during im-

mersion treatments of food matrix (deformable, of non-

inert squeleton) such as the immersion freezing or the

osmotic dehydration processes.

In Fig. 3, the analytical solution [13] is calculated for

two constant values of D`
1=2�D`

1=2 � 1:40� 10ÿ9 and

1:20� 10ÿ9 m2 sÿ1). These correspond to the limits of

the range of variation of D`
1=2 (variation of x`

1 from zero

to saturation at 20°C), the equivalent of a �15% varia-

tion. The two pro®les calculated using the analytical

solutions [13] are situated on either side of the pro®le

simulated by the numerical model. These results all

validated the calculation code for isothermal mass

transport. Overall, an uncertainty of 15% for the value

of the di�usion coe�cient made it possible to roughly

delimit the experimental error for the NaCl distribution

pro®les. Experimental uncertainty was primarily linked

to the sampling volume (equivalent to a sphere 1.5 mm

in diameter) [12], as represented on the x-axis in Fig. 3.

In the following simulations, the coe�cient of mutual

di�usion for water and NaCl is therefore assumed to be

constant and equal to the value of the di�usion coe�-

cient at in®nite dilution, D`
1=2�

. The experimental un-

certainty on x`
1 also did not allow any re®nement of the

identi®cation of the tortuosity parameter, which is kept

at p/2 in the following simulations.

4.2. Heat transport without phase change, with no mass

transfer

Fig. 4 compares the experimental temperature pro-

®les within the porous medium (e � 0:43) and the pro-

®les predicted both by our model and using the

analytical solution of the Fourier equation proposed by

Carslaw and Jaeger [14] in the case of a ¯at sheet

0 < x < 0:045 m of uniform initial temperature and

concentration (x`
10
� 0:01, T0 � 30°C) in indirect con-

tact with a water±NaCl solution (T1 � 9:8°C; h � 500

W mÿ2 Kÿ1). The bead bed was separated from the ex-

ternal solution (the refrigerating medium) by a metal

sheet (thickness 0.2 mm). The thermal resistance of the

sheet was negligible in comparison with the convective

resistance of the external solution and the conductive

resistance of the bead bed.

There was a perfect ®t between the pro®les simulated

by the model and those calculated from the analytical

solution of Carslaw and Jaeger [14]. This agreement

validated the calculation code for heat transport without

phase change with no mass transfer. Quite a good

agreement was also noted between the simulated and the

experimental results. This appeared to con®rm the

conductive nature of the heat transfer occurring within

the bead bed.

4.3. Heat transport with phase change with no mass

transfer

Fig. 5 compares the experimental changes, as a

function of time, of the temperature at 5 positions (2,

Fig. 3. NaCl pro®les in a glass bead bed (x`
10
� 0:01,

T0 � 20°C, e � 0:4, L � 0:1 m) in contact with a water±NaCl

solution (x`
11 � 0:234, T1 � 20°C, h � 500 W mÿ2 Kÿ1). Ex-

periment and simulations with analytical and numerical models.

Fig. 4. Temperature pro®les at various times during the cooling

of a porous medium (x`
10
� 0:01, T0 � 30°C, e � 0:43,

L � 0:045 m) in contact with a cold plate (T1 � 9:8°C, h � 500

W mÿ2 Kÿ1). Experiment and simulations with analytical and

numerical models.
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6, 11, 21 and 31 mm) within the porous medium

(e � 0:43) and the changes predicted by our model in

the case of a ¯at sheet 0 < x < 0:045 m of uniform

initial concentration and temperature (x`
10
� 0:0305,

T0 � 17:9°C) in indirect contact with a concentrated

water±NaCl solution (T1 � ÿ12:4°C; h � 500 W mÿ2

Kÿ1).

There was good agreement between the experimen-

tal temperature data and those predicted by the model

at the 21 and 31 mm positions. At the 2 and 6 mm

positions, on the other hand, the simulated tempera-

tures were lower than the experimental temperatures

from 4 min onwards, by a maximum of 5°C. This

discrepancy is the consequence of Assumption (A4)

which consider the densities of water and ice equal, and

of Assumption (A2) (local thermodynamic phase equi-

librium) which does not allow the model to represent

the supercooling phenomena. The supercooling noted

near the surface (not represented in the ®gure) in fact

slowed the rate of cooling to at least 11 mm depth.

Despite such retardation phenomena, the model re-

¯ected the overall shape of the freezing kinetics well.

The model gave a good simulation of the experimental

data for most of the freezing and thus appeared to

predict the overall duration of freezing correctly in the

bead bed.

Let us precise that all the data usefull for the simu-

lations of heat transport alone originated from exper-

imental literature (h, e, ki, Ci, qi). The good agreement

between the simulated data and the experimental data,

obtained with or without phase change, validate the

model used for the thermal conductivity of the porous

medium.

4.4. Simultaneous heat and mass transport over long

treatment times

Thawing and impregnation mechanisms inherent in the

model: illustrations. Figs. 6 and 7 show the time±course

changes in the calculated NaCl mass fraction relative to

the liquid phase, x`
1 and to the ice±liquid mixture, x�1 ,

and in the calculated ice mass fraction relative to the ice±

liquid mixture, x�3 , within a porous medium (x`
10
� 0:03,

T0 � 20°C; e � 0:4, L � 0:04 m) in contact with a

concentrated water±NaCl solution (x`
11 � 0:21, T1 �

ÿ12°C; h � 400 W mÿ2 Kÿ1) for t < 10 h and t < 12

days, respectively.

For any point in the porous medium far enough from

the surface (e.g. 13 mm in Figs. 6 and 7), the kinetics of

x`
1;x

�
1 and x�3 can be broken down into three phases.

During the ®rst phase (I), most of the heat transport

occurs without solute di�usion: x�1 � x`
10
� const

(Fig. 7). Thermal equilibrium is reached in about 4 h.

The amount of frozen water, x�3max
, is then maximal for

the given operating conditions; in the absence of mass

transfer, this amount (81% in Figs. 6 and 7) is deter-

mined by T1 and x�10
. Additionally the increase in the

NaCl mass fraction in the liquid phase up to saturation

concentration is solely the e�ect of cryoconcentra-

tion. During the second phase (II), e.g. from 8.8 days

for x � 13 mm (Fig. 7), NaCl arrives by di�usion

(x�1 > x`
10

) and causes the ice crystals to melt (x�3 de-

creases). The melted water dilutes the liquid phase in

accordance with the thermodynamic equilibrium curve

of the liquidus. For example, in such conditions, for 16 g

of NaCl transported by di�usion in this region, 84 g of

ice melts. This is important to understand that while all

Fig. 5. Time±course changes in temperature (2, 6, 11, 21 and 31 mm) during the freezing of a porous medium (x`
10
� 0:0305,

T0 � 17:9°C, e � 0:43, L � 0:045 m) in indirect contact with a concentrated water±NaCl solution (T1 � ÿ12:4°C, h � 500 W mÿ2 Kÿ1).

Confrontation of experimental and simulated (numerical model) data.
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the ice has not melt at x � 13 mm, the solute does not

penetrate deeper in the partially frozen region (x > 13

mm). Once all the ice has melted (i.e. at 9.4 days in Fig.

7) the third phase (III) begins. NaCl transport continues

and only NaCl concentration in the liquid phase in-

creases at x � 13 mm. In other words, the situation is

one of simple isothermal mass di�usion (at T1) in the

liquid phase (x�1 � x`
1). The very beginning of phase

(III) at x � 13 mm corresponds to the start of phase (II)

in the next node (x� Dx).

Close to the interface, earlier interactions between

heat and mass transfer occur. As illustrated at x� 1.4 mm

in Fig. 6, solute arrives (at t� 1 h) while thermal equi-

librium has not yet been reached (x�3 � 0:76 < x�3max
):

strictly speaking, one cannot de®ne the previously ob-

served phase (I) at this considered point in the porous

medium. The ice starts to melt (equivalent phase II,

noted phase IIÕ in Fig. 6) while the temperature of the

medium falls. This occurs independently of cryocon-

centration, which continues (x`
1 is still increasing while

ice melting). After 2 h, all ice crystals have melted. Fig. 6

additionally shows that the surface did not freeze at all

(x�3 � 0 8t), and NaCl concentration quickly ap-

proaches that of the external solution, x`
11: Other study

showed that the total absence of freezing could even

apply to thin layers beneath the surface of the porous

medium [15].

The melting of the ice crystals reproduced by the

numerical model covers only one space element at a

time, thus suggesting the advance of a (localised)

thawing front separating a completely thawed region

from a region that is either frozen or in the process of

freezing (this phenomenon is well illustrated in Fig. 9

presented in Section 4.5). The same phenomenon has

been observed for other simulation con®gurations, in

particular where x`
10

is variable.

All these mechanisms appear in part similar to the

assumptions serving as the basis for the analytical ap-

proach developed by Harrison and Osterkamp [9] and

others, and presented in Section 1. The following section

compares the simulations of these two models with a set

of experimental data.

Fig. 7. Changes over time in simulated NaCl (x`
1;x

�
1 ) and ice

(x�3 ) fractions in a glass bead bed (x`
10
� 0:03, T0 � 20°C,

e � 0:4, L � 0:04 m) in contact with a water±NaCl solution

(x`
11 � 0:21, T1 � ÿ12°C, h � 400 W mÿ2 Kÿ1) for a 12-day

simulation. Refer to the text for x�3max
signi®cation.

Fig. 6. Changes over time in simulated NaCl (x`
1;x

�
1 ) and ice

(x�3 ) fractions in a glass bead bed (x`
10
� 0:03, T0 � 20°C,

e � 0:4, L � 0:04 m) in contact with a water±NaCl solution

NaCl (x`
11 � 0:21, T1 � ÿ12°C, h � 400 W mÿ2 Kÿ1) for a

10-h simulation. Refer to the text for x�3max
signi®cation.
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4.5. Experimental validation using a glass bead bed

Fig. 8 compares the experimental advance of the

thawing front over 50 days with that simulated by the

numerical model and the analytical model of Harrison

and Osterkamp [9] for a glass bead bed (x`
10
� 0:0305,

T0 � 17:7°C, e � 0:43, s � p=2; L � 0:045 m) in contact

with a water±NaCl solution (x`
11 � 0:234, T1 �

ÿ12:4°C, h� 500 W mÿ2 Kÿ1). The advance of the

thawing front predicted by the analytical model is given

by

X tf g � 1

2

Tsat x`
11

� 	
T1

��
ÿ 1

��1=2
��������������
4

Dm
1=2

e
t

r
: �38�

The experimental advance of the thawing front was in-

directly monitored when sampling was carried out at the

points where the needles were situated: once the porous

medium had started to freeze, it rapidly became im-

possible to sample the liquid phase because of the small

amount of remaining solution. Sampling again became

possible once the thawing front passed a given needle,

thus allowing discontinuous monitoring of the advance

of the thawing front. Attempts at sampling were made as

often as possible at the points where the three needles

had been placed in the bead bed (x� 8, 13, 28 mm).

Sampling was again possible at these points at t� 1.9,

5.9 and 47 days, respectively, and later [12].

It is apparent that the numerical model satisfactorily

reproduced the evolution of the thawing front observed

in the bead bed. The advance of the thawing front

predicted by the analytical model was faster than that

predicted by the numerical model: the thickness of the

thawed layer predicted by the analytical model was in

this case 40±50% greater than that predicted by the

numerical model. This can doubtless be attributed to

the fact that the analytical model did not take account

of the marked nonlinearity of the liquidus curve x`
1

linked to T.

Fig. 9 presents the pro®le of the experimental NaCl

mass fraction in the liquid phase [12] and that calculated

by the numerical model within a bead bed in contact

with a water±NaCl solution for the same conditions as

in Fig. 8 and for di�erent days: 6, 15 and 30 days. The

ice fraction pro®le calculated for the same conditions is

also presented in each ®gure, to localise the thawing

`front'.

In Fig. 9, the sampling position at x� 13 mm (the

®rst sample possible at this point) coincides at t� 6 days

with the position of the thawing front predicted by the

numerical model: it is apparent that, at the start of

phase III, concentration in the liquid phase was close to

the value for xsatfT1g predicted by the thermodynamic

equilibrium between the liquid and ice phases. Once the

glass bead bed had thawed at a given point, the ex-

perimental NaCl content increased over time (as shown

for instance at x� 13 mm in Fig. 9 at t� 15 and 30

days), and this was reproduced quite well by the model

in quantitative terms. The number of experimental

points was insu�cient, however, to validate the linearity

of the NaCl content pro®le simulated by the numerical

model.

5. Conclusion

The one-dimensional numerical simulations of po-

rous medium freezing in contact with a concentrated

aqueous solution give the changes in solute concentra-

tion, ice fraction and temperature ®elds against time.

They reproduce very satisfactorily the experimental re-

sults obtained with the glass bead bed. The model was

veri®ed for both heat and mass transfer, both coupled

and without coupling, over wide ranges of temperature

(30°C to )12.4°C) and solute concentration (0.01±

0.234). All physical and transport property values used

in the simulations were taken from the literature or

previously measured by the authors (porosity and heat

transfer coe�cient). In the application case of the im-

mersion freezing process, the model demonstrated the

existence of two regimes of solute impregnation closely

linked to ice formation:

1. At the start of the process, solute di�usion can be

fast enough to prevent any freezing whatsoever at

the interface, and to enhance the thawing of recent-

ly ÔfrozenÕ layers. This results in a non-frozen sur-

face layer forming within the time necessary to

reach thermal equilibrium at core of the porous

medium.

Fig. 8. Comparison (over 50 days) of the experimental advance

of the thawing front and the advance simulated by our nu-

merical model and the analytical model of Harrison and

Osterkamp [9], for a porous medium made of glass beads

(x`
10
� 0:0305, T0 � 17:7°C, e � 0:43, L � 0:045 m) in contact

with a water±NaCl solution (x`
11 � 0:234, T1 � ÿ12:4°C,

h � 500 W mÿ2 Kÿ1). Experimental data taken from [12].
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2. Continuous solute di�usion in the non-frozen layers

causes the adjacent ice crystals to melt (local equi-

librium condition). This would persist until mass

equilibrium between the liquid phases of the porous

medium and the external solution has been reached.

The ®nal equilibrium state of the porous medium is

conditioned by the characteristics of the refrigerat-

ing external solution: with monophasic (liquid)

freezants, the product thaws completely and its sol-

ute concentration approximates that of the solu-

tion.

Appendix A. Expression of coe�cients An
j and Bn

i½�1;2;3;4�; j

B1 � �1ÿ e�q4C4 � eq`C`;

B2 � eq`C3 ÿ q`C`;

B3 � eq` DH :

� for 1 < j < j max

Bn
4j
� Dt

Dx2
km� �nj�1=2 T n

j�1

�n
ÿ T n

j

�
� km� �njÿ1=2 T n

jÿ1

�
ÿ T n

j

�o
� T n

j �1
n
ÿ e�q4C4

� eq`C3 x�3
� �n

j � eq`C`�1ÿ x�3
� �n

j �
o

ÿ eq`DH x�3
� �n

j
;

An
j � �1ÿbx�3 cnj �bx`

1cnj

� Dt
Dx2

D`
1=2

h in

j�1=2

s
1
�8><>: ÿ x�3

� �n

j�1=2

�
x`

1

� �n

j�1

�
ÿ x`

1

� �n

j

�

�
D`

1=2

h in

jÿ1=2

s
1
�
ÿ x�3
� �n

jÿ1=2

�
x`

1

� �n

jÿ1

�
ÿ x`

1

� �n

j

�9>=>;:

Fig. 9. Experimental (x� 8, 13 and 28 mm) pro®les of the NaCl mass fraction in the liquid phase and pro®les of both the ice fraction

and NaCl mass fraction calculated by the numerical model, within a bead bed (x`
10
� 0:0305, T0 � 17:7°C, e � 0:43, L � 0:045 m) in

contact with a water±NaCl solution (x`
11 � 0:234, T1 � ÿ12:4°C, h � 500 W mÿ2 Kÿ1) at (a) 6 days, (b) 15 days and (c) 30 days.

Experimental data taken from [12].
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� for j� 1:

Bn
4j�1
� Dt

Dx2
km� �nj�3=2 T n

j�2

��
ÿ T n

j�1

�
� Dt

Dx
h T1
�

ÿ T n
j�1=2

��
� T n

j�1 �1
n
ÿ e�q4C4

� eq`C3 x�3
� �n

j�1
� eq`C` 1

�
ÿ x�3
� �n

j�1

�o
ÿ eq`DH x�3

� �n

j�1
;

An
j�1 � 1

�
ÿ x�3
� �n

j�1

�
x`

1

� �n

j�1

� Dt
Dx2

D`
1=2

h in

j�3=2

s
1
�8><>: ÿ x�3

� �n

j�3=2

�
x`

1

� �n

j�3=2

�

ÿ x`
1

� �n

j�1

�9>=>;� Dt
Dx

q1K
q`e

x`
1

� �
1

�
ÿ x`

1

� �n

j�1=2

�
:

� for j � j max:

Bn
4j max

� Dt
Dx2

km� �nj max�1=2 T n
j max�1

�
ÿ T n

j max

�
� T n

j max �1
n
ÿ e�q4C4 � eq`C3 x�3

� �n

j max

� eq`C`�1ÿ x�3
� �n

j max
�
o
ÿ eq`DH x�3

� �n

j max
;

An
j max � 1

�
ÿ x�3
� �n

j max

�
x`

1

� �n

j max

� Dt
Dx2

bD`
1=2cnj max�1=2

s
1
�(
ÿ x�3
� �n

j max�1=2

�
� x`

1

� �n

j max�1

�
ÿ x`

1

� �n

j max

�)
:

� for j� 1/2 (x� 0):

Temperature and concentration at the system surface

were deduced assuming a quadratic pro®le, respectively,

in temperature and concentration, e.g.

T n
j2 1;2� �

�
ÿ T n

j�1=2

�
� cx� dx2:

Further details on the calculation can be obtained in

[16].

Appendix B. Numerical values of physical parameters

� Density and speci®c heat capacity at constant

pressure

� E�ective thermal conductivity km (W mÿ1 Kÿ1) (from

Ref. [17])

km � k4� �q4�1ÿe� k3� �q3ex�
3 k`� �q`e�1ÿx�

3
�
;

where ki is the thermal conductivity of component i (W

mÿ1 Kÿ1) and value is taken from the literature [18±20]

k3 � 0:4685� 488=�T� � 273:15��;
k4 � 1:16;

k` � �0:57ÿ 0:64x`
l� � �1:14� 10ÿ3 ÿ 2� 10ÿ3x`

1�T :
� E�ective di�usion coe�cient of NaCl Dm

1=2 (m2 sÿ1)

Dm
1=2 �

D`
1=2

s
;

where s is the tortuosity or the relative increase in the

transport of molecules through the liquid phase due to

the presence of the solid matrix of the porous medium

and the presence of ice crystals (s � p=2). Please note

that the tortuosity is assumed to be independent on the

ice fraction (spherical ice crystals of diameter similar to

glass beads) (A11). However the obstruction to trans-

port associated with the ice crystals is taken into account

in the mass di�usivity. D`
1=2 is the mutual di�usion co-

e�cient of water and NaCl. Data for D`
1=2 for

(T < 10°C) are not available in the literature. This co-

e�cient was calculated from the correlation established

by Bohuon [21] at 20°C

D`
1=2=D`

1=2�
� 1ÿ 0:3869

������
m1

p � 0:274m1 ÿ 0:0197m2
1;

where m1 is the NaCl molality (mol kgÿ1 of solvant).

D`
1=2�

is the mutual di�usion coe�cient of water and

NaCl at in®nite dilution and was estimated using the

Stokes±Einstein relation [22] for T � 20°C: �D`
1=2�
� l2�=

�T � 273:15� � const, where l2 is the dynamic viscosity

of water and T is the temperature. The dynamic viscosity

of water for ÿ12 < T < 0°C is assumed to be the same

as the viscosity of supercooled water, on the basis of the

data presented by Ref. [23].

� Latent heat of fusion of ice at 0°C:

DH � 334� 103 �J kg
ÿ1�:

� Liquidus curve equation: the ®tted liquidus curve

was determined according to experimental data from

literature [20]

Tsat � ÿ0:027ÿ 46:30x`
1 ÿ 182:02�x`

1�2:
· When comparing the simulated and experimental

data, the porosity of the porous medium and the

overall heat transfer coe�cient values used were

those assessed experimentally (refer Section 3).

· Heat and mass transfer at the interface porous me-

dium/external solution are coupled by assuming a

Chilton±Colburn analogy. Mass and heat transfer

coe�cients are then linked by the following relation:

Component (i) qi
i

(kg mÿ3)

Ci

(J kgÿ1 Kÿ1)

liquid (`) (water + solute) 1000 4180

Ice (3) 1000 2900

Glass beads (4) 2700 800
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K � h
D`

1=2�
k1

D`
1=2�
a1

" #1=3

:
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